发布时间:2025-08-23 16:51:12 点击量:
HASH GAME - Online Skill Game GET 300
强化学习(RL)是提升语言模型推理与问题求解能力的关键技术。然而,现有算法如 GRPO 在长期训练中存在严重不稳定性,限制了性能提升。为此,我们提出 **Group Sequence Policy Optimization (GSPO)**,通过在序列层面定义重要性比率并进行优化,显著提升了训练效率与稳定性。GSPO 在 MoE 模型训练中表现出色,无需依赖复杂策略即可实现高效训练,简化了 RL 基础设施。该算法已成功应用于 Qwen3 系列模型,推动 RL scaling 边界,释放模型潜能。
作为一名深耕算法优化领域多年的技术工程师,我见证了无数次关于排序算法性能讨论的激烈辩论,而快速排序(QuickSort)始终以其卓越的实践表现占据着核心地位。今天我想和大家深入探讨的,不仅仅是快速排序的基础实现,更是如何通过精妙的内存优化策略,将其从理论上的O(n²)最坏时间复杂度,提升到实际应用中稳定的O(n log n)性能表现,并实现真正的cache-friendly设计。在我的实践经验中,许多开发者对快速排序的理解还停留在基础的递归实现层面,而忽略了现代计算机体系结构下内存层次结构对算法性能的深刻影响。本文将系统地分析快速排序在内存访问模式、缓存局部性、尾递归优化等方面的核心技术要点,
随着 AI 技术快速发展,业务对 AI 能力的渴求日益增长。当 AI 服务面对处理大规模请求和高并发流量时,AI 网关从中扮演着至关重要的角色。AI 服务通常涉及大量的计算任务和设备资源占用,此时需要一个 AI 网关负责协调这些请求来确保系统的稳定性与高效性。因此,与传统微服务架构类似,我们将相关 API 管理的功能(如流量控制、用户鉴权、配额计费、负载均衡、API 路由等)集中放置在 AI 网关层,可以降低系统整体复杂度并提升可维护性。 本文要分享的是B站在大模型时代基于多模型AI的网关架构设计和实践总结,希望能带给你启发。