联系hashgameCONTACT hashgame
地址:广东省广州市
手机:13988889999
电话:020-88889999
邮箱:admin@qq.com
查看更多
Rhashgamehashgame
你的位置: 首页 > hashgame > hashgames

HASH GAME - Online Skill Game ET 300Simhash算法及java实现doc

发布时间:2025-05-16 14:38:17  点击量:

  HASH GAME - Online Skill Game GET 300

HASH GAME - Online Skill Game GET 300Simhash算法及java实现doc

  SimHash算法及Java实现传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息。而Google的simhash算法产生的签名,可以满足上述要求。出人意料,这个算法并不深奥,其思想是非常清澈美妙的。1、Simhash算法简介simhash算法的输入是一个向量,输出是一个f位的签名值。为了陈述方便,假设输入的是一个文档的特征集合,每个特征有一定的权重。比如特征可以是文档中的词,其权重可以是这个词出现的次数。simhash算法如下:1)将一个f维的向量V初始化为0;f位的二进制数S初始化为0;2)对每一个特征:用传统的hash算法对该特征产生一个f位的签名b。对i=1到f:如果b的第i位为1,则V的第i个元素加上该特征的权重;否则,V的第i个元素减去该特征的权重。3)如果V的第i个元素大于0,则S的第i位为1,否则为0;4)输出S作为签名。2、算法几何意义和原理这个算法的几何意义非常明了。它首先将每一个特征映射为f维空间的一个向量,这个映射规则具体是怎样并不重要,只要对很多不同的特征来说,它们对所对应的向量是均匀随机分布的,并且对相同的特征来说对应的向量是唯一的就行。比如一个特征的4位hash签名的二进制表示为1010,那么这个特征对应的4维向量就是(1,-1,1,-1)T,即hash签名的某一位为1,映射到的向量的对应位就为1,否则为-1。然后将一个文档中所包含的各个特征对应的向量加权求和,加权的系数等于该特征的权重。得到的和向量即表征了这个文档,我们可以用向量之间的夹角来衡量对应文档之间的相似度。最后为了得到一个f位的签名,需要进一步将其压缩,如果和向量的某一维大于0,则最终签名的对应位为1,否则为0。这样的压缩相当于只留下了和向量所在的象限这个信息,而64位的签名可以表示多达264个象限,因此只保存所在象限的信息也足够表征一个文档了。明确了算法了几何意义,使这个算法直观上看来是合理的。但是,为何最终得到的签名相近的程度,可以衡量原始文档的相似程度呢?这需要一个清晰的思路和证明。在simhash的发明人Charikar的论文中[2]并没有给出具体的simhash算法和证明,以下列出我自己得出的证明思路。Simhash是由随机超平面hash算法演变而来的,随机超平面hash算法非常简单,对于一个n维向量v,要得到一个f位的签名(fn),算法如下:随机产生f个n维的向量r1,…rf;对每一个向量ri,如果v与ri的点积大于0,则最终签名的第i位为1,否则为0。这个算法相当于随机产生了f个n维超平面,每个超平面将向量v所在的空间一分为二,v在这个超平面上方则得到一个1,否则得到一个0,然后将得到的f个0或1组合起来成为一个f维的签名。如果两个向量u,v的夹角为θ,则一个随机超平面将它们分开的概率为θ/π,因此u,v的签名的对应位不同的概

【返回列表页】

顶部

地址:广东省广州市  电话:020-88889999 手机:13988889999
Copyright © 2018-2025 哈希游戏(hash game)官方网站 版权所有 非商用版本 ICP备案编: